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EXECUTIVE SUMMARY  

The Moraine Mesocarnivores Project (MMP) investigates the degree to which the network of 

protected areas, private woodlots, and developed land within the mixed-use landscape of central 

Alberta's heartland maintains mammalian diversity, and whether this landscape is connected to forested 

areas in the west and north. Our goals are to (1) measure mammal diversity and statistically relate this 

to landscape structure, and (2) test for connectivity within and among protected areas by examining the 

movement and genetic structure of fisher (Pekania pennanti) populations.  

In November 2013 we deployed 64 sampling points in a systematic design and sampled mammal 

species occurrence using non-invasive genetic tagging via hair trapping, and camera trapping. In 2014-

2015 we conducted genetic analysis on these hair samples. From November 2015 through March 2016, 

we repeated hair trapping and camera trapping; we also live-trapped and GPS-collared 14 fisher 

individuals. Most recently, in 2016-2017, we (i) examined fisher genetics to understand how the 

forested heartland is connected to distant forested areas in the boreal forest and Rocky Mountains; (ii) 

examined how camera data of fisher occurrence represents actual fisher movement, as a guide to large-

scale monitoring; (iii) mapped fisher movement pathways in relation to natural and anthropogenic 

landcover, to understand how development facilitates (or impedes) their movement, and hence 

persistence; and (iv) began analysis of the mammalian community – from wolves to weasels – across 

this landscape. The final analysis, and the final reporting of this project, is our goal for the upcoming 

year. This report contains two preliminary publications from this project, which are being submitted to 

the journal Biological Conservation and to Ecological Applications, and has been presented in several 

public and academic lectures. 

As this work comes together, please feel free to contact either myself (fstewart@uvic.ca), or 

Jason (Jason.fisher@innotechalberta.ca), at any point with questions about this research. You can also 

keep up to date on project results and happenings by visiting the project website: 

www.mesocarnivore.weebly.com.  

We very much appreciate your enthusiasm and support of this project to date, and look forward 

to delivering ongoing results as this project comes to a close.  

Best, Frances  
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1.0 INTRODUCTION AND MOT IVATION  

Biodiversity is declining worldwide and increasing human footprint is the primary driver 

(Vitousek et al. 1997, Sanderson et al. 2002, Leu et al. 2008). Alberta is a special case of this global 

problem. A diversity of economic opportunities - forest harvesting, agriculture, and petroleum 

extraction – generate a diversity of disturbance patterns in Alberta, where the rate of forest loss is one 

of the highest on the planet, eclipsing even the Amazonian rainforest (Global Forest Watch Canada 

2014). Years of rapid development have radically changed the Alberta landscape. For example, the 

Alberta boreal forest is now a novel landscape, without analog historically or geographically (Pickell et 

al. 2013, Pickell et al. 2014, Pickell et al. 2015). The effects of wholesale habitat change on Alberta’s 

biodiversity remain largely unknown. This is true even of "Alberta's Heartland", the mixed forest and 

prairie region in central Alberta. 

The persistence of wildlife populations on Alberta’s landscape are entirely dependent on how 

well that landscape functions (Wiens 1992, Wiens et al. 1993), which in turn depends on the degree of 

habitat fragmentation it has sustained from landscape development (Fahrig 1999, Fahrig 2001, Fahrig 

2002, 2003).  In central Alberta, fragmentation stems from development in multiple sectors: agriculture, 

petroleum extraction, rural residential properties, and transportation infrastructure. The cumulative 

effects of these impacts on biodiversity in the region remain, surprisingly, largely unknown. Alberta’s 

Land Use Framework (LUF) assumes that a mix of protected areas (PAs) and remaining habitats within 

the “working landscape” will together support wildlife populations. This pivotal assumption in the LUF 

remains untested, and we know nothing about the thresholds of human impact that will permit, or 

prevent, wildlife populations from remaining on the landscape. 

The Moraine Mesocarnivores Project tests new ideas about the biodiversity, connectivity, and 

conservation value of small protected areas in a landscape with cumulative effects of multiple impacts. 

We are examining the diversity and distribution of mammal species within a matrix of PAs and private 

land in central Alberta, with natural habitats contiguous with areas of significant anthropogenic 

disturbance. We will use a combination of field, laboratory, and statistical methods to understand the 

diversity on the PAs, their value relative to the surrounding “working” landscape, and the connectivity 

between protected areas, which is so vital to maintaining persistent wildlife populations.  
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2.0 INVESTIGATING ASSUMP TIONS OF ALBERTA'S LAND USE FRAMEWORK: 

LANDSCAPE CONNECTIVITY BETWEEN ALBERTA'S  HEARTLAND, THE 

NORTHERN BOREAL FOREST, AND THE ROCKY MOUNTAINS  

Frances E.C. Stewart1, John P. Volpe1, John S. Taylor1, Jeff Bowman2, Philippe J. Thomas3, 

Margo J. Pybus4, and Jason T. Fisher1,5 

1University of Victoria, School of Environmental Studies, 3800 Finnerty Rd., Victoria, BC, 

Canada, V8W 2Y2 
2Wildlife Research & Monitoring, Ontario Ministry of Natural Resources, 2140 East Bank Drive, 

Peterborough, ON, Canada, K9J 7B8 
3National Wildlife Research Centre – Carleton University, Environment and Climate Change 

Canada, 1125 Colonel By Drive, Ottawa, ON, K1A 0H3, Canada 
4Alberta Fish and Wildlife Division, Government of Alberta, 6909-116 St., Edmonton, AB, 

Canada, T6H 4P2  
5Ecosystem Management Unit, InnoTech Alberta, 3-4476 Markham St., Victoria, BC, Canada, 

V8Z 7X8 

2.1 PREFACE 

This section is based on a paper conducted under the Moraine Mesocarnivores Project. One of 

the primary goals of the MMP is to scientifically investigate whether the primary assumptions of 

Alberta's Land Use Framework holds true: the Green (forested) Zones of Alberta are functionally 

connected to one another although the land between them is highly developed for agriculture and other 

sectors. We had the unique opportunity to test this assumption by examining the genetics of the fisher 

(Pekania pennanti) population on Alberta's Cooking Lake Moraine. This population had been extirpated 

long ago, and then was reintroduced, bringing a genetic "dye marker" experiment that lets us examine 

how those genes spread through Alberta. This research was a national collaborative effort; this paper is 

tentatively accepted (pending revisions) in Biological Conservation. 

2.2 ABSTRACT 

Reintroductions are a common biological conservation tool for restoring lost biodiversity around 

the globe and across taxa. However, rarely is the probability of recolonization explicitly examined when 

considering reintroduction. Performing post-hoc genetic tests between reintroduced and adjacent 
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populations documents the success rate for these two management strategies and may provide 

surprising results about species recolonization ability. We use the fisher (Pekania pennanti), one of 

North America’s most commonly reintroduced species, as a model to conduct an evaluation of 

reintroduction success. We assessed 15 microsatellite loci to determine the genetic contribution of 

reintroduced individuals to an ostensibly successfully reintroduced population in central Alberta, 

Canada. Principle component analysis and Bayesian statistical methods converged with confidence on 

one result: assayed individuals were descended from adjacent native Albertan populations, not putative 

founders from eastern Canada. These results indicate that reintroduction was a suboptimal 

management strategy as fishers have naturally recolonized central Alberta. A review of fisher 

reintroduction literature reveals potentially similar patterns: a large proportion of contemporary 

individuals appear to be the result of recolonization events. This rare test has broad implications on 

conservation as it suggests 1) over-confidence in reintroductions, perhaps resulting in significant 

expenditure of financial and human capital on initiatives of modest, if any, benefit, and 2) 

underestimation in species’ ability to disperse and (re-) colonize, highlighting limits to our understanding 

of functional connectivity. Importantly, obtaining genetic samples from reintroductions with even 

minute probabilities of recolonization will allow for objective comparison, publication, and evaluation of 

the most effective conservation methods. 

 

Abbreviations: CLM – Cooking Lake Moraine, WW – Willmore Wilderness, NA – Northern Alberta, MB – 

Manitoba, ON - Ontario 

2.3 INTRODUCTION 

Reintroduction – the attempt to re-establish a species in part of its native range (Pavlik 1996; 

IUCN 1998; IUCN/SSC 2013) remains a popular management method in conservation biology after a 

century of use (Hayward & Sommers 2009; Seddon et al. 2014). Considerable contemplation is given to 

reintroductions as a conservation tool across taxa: in 2016, the Species Survival Commission 

Reintroduction Specialist Group of the World Conservation Union (IUCN) lists 52 ongoing case studies 

encompassing invertebrates, fish, amphibians, reptiles, birds, mammals, and plants (Soorae 2016). The 

rate of reintroductions being conducted each year is increasing (Seddon et al. 2007), reflecting the 

conservation community’s growing confidence in the strategy compared to other management options. 

Successful reintroductions are loosely defined as ‘establishment of a self-sustaining population’ (Seddon 
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1999; but see Beck et al. 1994; Sarrazin & Barbault 1996) and are most commonly observed in North 

America, Australia, and New Zealand (Fischer & Lindenmayer 2000). Often less consideration is given to 

the real probability for natural recolonization. Many reintroductions are performed in systems perceived 

to be highly isolated; however, natural recolonization is possible in many areas that demonstrate some 

form of contemporary, or importantly future, functional connectivity to adjacent populations (Karieva 

1990). With both landscape and climate change altering the occurrence and distribution of biodiversity 

(Maxwell et al. 2016) the possibility of natural recolonization should be prioritized for many mobile 

species (Rout et al. 2013).  

 Context about the dynamics of reintroduced populations may be gleaned from the invasion 

biology literature. Species invasions and reintroductions are characterized by initiation and expansion 

stages prior to establishment (Shigesada & Kawasaki 1997; Armstrong & Seddon 2007). Invasive (or 

exotic) species rarely establish following a single introduction (Shigesada & Kawasaki 1997). In 

reintroductions, the probability of establishment can be greatly increased with planning and relies on a 

suite of limiting factors such as habitat availability and quality, predation, parasitism, and duration in 

captivity (Seddon et al. 2014). Invasion biology recognizes the ‘Tens Rule’ where 10% of introduced 

species establish and a further 10% of these spread (Jeschke & Strayer 2005).  Reintroduction biology 

recognizes that roughly 20% of reintroductions have been self-described as “successful” (Griffith et al. 

1989; Seddon et al. 2014); one might expect this rate may be inflated, and question why conservation 

efforts are being spent on reintroduction compared to other management techniques that address the 

mechanisms that lead to extirpation in the first place.  

 “Success” is a contested term in reintroduction biology. Definitions vary with project objectives, 

life history of the species, and the temporal scale of observation (Griffith et al.1989; Beck et al. 1994; 

Sarrazin & Barbault 1996; Seddon 1999; Haskins 2015; Robert et al. 2015). The IUCN provides guidance 

(IUCN 1998; IUCN/SSC 2013), however no definition enjoys a consensus. There are no standards for 

comparison, and specifically no threshold for discriminating the successful establishment of 

reintroduced individuals from recolonization events (Robert et al. 2015); just because a species is 

present in a reintroduction location does not equate to a successful reintroduction. We define 

‘reintroduction success’ as an instance where the reintroduced genetic lineage is maintained in the 

contemporary population. Using this definition, we question whether reintroduction success is as high 

as the 20% currently documented (Seddon et al. 2014). Do conservation biologists overestimate 
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reintroduction success, and perhaps underestimate the frequency with which species naturally 

recolonize former ranges? To distinguish between reintroduction and recolonization success, 

reintroduction events need to be tested using genetic assessments within a critical time limit; too long 

and the results will be ambiguous due to accumulation of mutations and/or genetic drift (Nei et al. 

1975), and too short risks false declaration of success.  

As an example of this larger issue for conservation biologists globally (Olding-Smee 2005), we re-

assessed a fisher (Pekania pennanti) reintroduction to Alberta’s Cooking Lake Moraine (CLM)  previously 

deemed “successful” (Badry et al. 1997; Proulx & Genereux 2009; Proulx & Dickson 2014). The loss of 

fisher from 40% of its historic range has stimulated frequent reintroduction attempts, making it an 

attractive model to investigate the probability of reintroduction versus recolonization success (Lewis et 

al. 2012; Powel et al. 2012). Between 1990 and 1992, twenty fisher were opportunistically reintroduced 

to the CLM from Steinbach, Manitoba and Bancroft, Ontario, after being held in captivity at Vegreville, 

Alberta (Badry 1994; Proulx et al. 1994; L. Roy, R. Toews, and J. Bowman pers com.). The CLM is an area 

where all evidence indicated the fisher was locally extirpated, due to overexploitation and land-use 

change, for a minimum of 50 years (Badry et al. 1997). Fishers have frequently been reported by 

landowners within the CLM since 2007 (Pybus et al. 2009), but between 1997 and 2007 no confirmed 

records exist. The CLM is a forested island surrounded by matrix of unsuitable agricultural habitat; 

extant fisher are widely hypothesized to be functionally isolated from adjacent Albertan populations. 

The distinct genotypic signatures of Manitoba, Ontario, and native Alberta (Kyle et al. 2001) provide an 

opportunity to assess the degree of reintroduction vs. recolonization success by comparing alleles 

between reintroduction source populations, adjacent Albertan populations, and contemporary CLM 

samples.  With an extant population, we test three non-mutually exclusive hypotheses about the 

outcome of the CLM reintroduction; 1) a successful reintroduction, wherein the genetic signature of one 

or both source populations (Ontario and Manitoba) is present within contemporary CLM samples, 2) re-

stocking, wherein an undetected population was occupying the CLM prior to reintroduction as indicated 

by unique alleles within CLM samples that do not appear in any other sampled population, or 3) natural 

recolonization, wherein contemporary fisher individuals are most closely related to animals from 

adjacent Albertan populations, without genetic evidence of Ontario or Manitoba fishers. 
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2.4 METHODS 

We investigated the ancestry of the contemporary CLM fisher population by comparing microsatellite 

genotype signatures against four possible candidate source groups: two adjacent Albertan populations 

and the two reintroduction source populations (Figure 1). We consolidated the most recently collected 

samples from each population (2000 – 2014).  
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Fig. 1. Fisher DNA samples were collected from 64 sample sites across Alberta’s Cooking Lake Moraine 

(CLM) and compared to four candidate source populations; two adjacent populations in Alberta 

(Willmore Wilderness in the Rocky Mountains and scattered trap lines throughout Northern Alberta) 

and reintroduction source populations (Manitoba and Ontario) to assess the success of a 1990/1992 

fisher reintroduction. Alberta’s boreal forest is highlighted in green and a fisher is depicted at a CLM 
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sample site. CLM = Cooking Lake Moraine, NA = northern Alberta, WW = Willmore Wilderness in the 

Rocky Mountains, MB = Manitoba, ON = Ontario. 

Samples from reintroduction source populations were donated from the original trap-lines 

sampled in Steinbach, Manitoba (2014 skin; R. Toews pers. com.) and Bancroft, Ontario areas (2000 – 

2003 muscle; sensu Carr et al. 2007, J. Bowman pers. com). CLM fisher DNA samples were collected 

from 64 stratified-random, non-invasive baited hair traps (sensu Fisher et al. 2011, 2013) in the winters 

of 2014 and 2016.  Fisher populations adjacent to the CLM were sampled via muscle samples donated 

from fur-harvested individuals in Alberta’s boreal forest north of Edmonton (2014), and isolated fisher 

DNA samples recovered from baited hair traps in Alberta’s Willmore Wilderness (Figure 1) in the Rocky 

Mountains (2006 - 2008; Fisher et al. 2011, 2013). All research was performed under the Canadian 

Council for Animal Care Guidelines (University of Alberta permit #AUP00000518).  

 We extracted DNA from samples using the QIAGEN DNeasy Blood & Tissue Kit® and protocol 

(Hilden, Germany). We excluded hair samples that did not contain at least 1 guard hair root or 5 

underfur hairs. Muscle and skin samples comprised a ~3 mm3 clipping. Samples that produced weak or 

no amplification were analyzed a second time for confirmation, after which we culled 22.8 % (87/381) of 

samples that failed on both attempts. A 15-microsatellite array was used to identify individuals and 

quantify genetic differentiation between individuals. Primers were developed by Duffy et al. 1998 

(Ggu101 and Ggu216 in wolverine), Dallas and Piertney 1998 (Lut604 in Eurasian otters), Davis and 

Strobeck 1998 (Ma-1, Ma-2 and Ma-19 in American marten, and Ggu7 in wolverine), Jordan et al. 2007 

(MP144, MP182, MP055, MP114, MP175, MP227 and MP247 in fisher), and Fleming et al. 1999 (Mvis72 

in mink and ermine). PCR reactions were performed in a volume of 15 μL containing 50 mM KCl, 160 μM 

dNTPs, and 0.1 % Triton X-100, with primers and Taq polymerase optimized to permit co-amplification 

(Paetkau et al. 1998).  PCR thermal cycling ran in a Perkin Elmer 9600 with an initial denaturing step of 

94°C for 1:20 min, 40 cycles of annealing and extension following 94°C for 20 s, 54°C for 25 s, and 72°C 

for 10 s, followed by 1:05 min at 72°C. Microsatellite error-checking followed Paetkau (2003) published 

protocol of reanalyzing mismatching markers in pairs of genotypes that are very similar. 

We used three statistical methods to determine the most probable ancestry of contemporary 

CLM genotypes. First, we compared genetic differentiation between groups using FST (Wright 1943), the 

probability of identity by descent based on allele frequency variation. FST values range from 0-1, with 

probability of identity by decent increasing as the value approaches zero. We determined FST, and 

whether these values were significantly different than zero in the hierfstat package. We determined the 
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most probable grouping of samples by genotype-based relationships by qualitatively observing whether 

sample locations clustered on a biplot with a PCA (Genetix; Belkhir et al. 2004), and quantitatively using 

MCMC maximum likelihood clustering algorithm (Structure; Hubisz et al. 2009) as well as an assignment 

test (Geneclass2; Piry et al. 2004). Finally, allele occurrences across sampled populations were screened 

for any CLM alleles diagnostic of reintroduction or recolonization (Table 1). 

2.5 RESULTS 

Both PCA and MCMC identified three distinct provincial clusters (Alberta, Ontario and Manitoba; 

Figure S1; Figure 2). Neither method suggested CLM samples were distinguished from Northern Alberta 

or Willmore Wilderness samples. Study areas contained 40 unique identified individuals from the CLM, 

19 from Willmore Wilderness, 34 from Northern Alberta, 29 from Ontario, and 25 from Manitoba (Table 

S1). Within Albertan samples, FST was just 0.04 between the Willmore Wilderness and the other two 

study areas, but just 0.02 (marginally greater than zero) between northern Alberta and the CLM. The 

highest FST (greatest genetic differentiation) when comparing Alberta samples to other provinces was 

between Ontario and the Willmore Wilderness (FST = 0.14; Table S2).  

 

 

Fig. 2. The probability of population structuring when 3 (upper; k = 3), or 4 (lower; k = 4), populations 

are assumed across fifteen-locus fisher (Pekania pennanti) genotype data. Each vertical line represents 

the probability of population assignment for an individual. Multiple runs under the same conditions 
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converged, and further increases in k did not produce plausible clusters nor did they increase the 

likelihood meaningfully (likelihoods rose sharply with each step from k = 1 through k = 4; Figure S2). The 

populations are: 1 Ontario; 2 Manitoba; 3 northern Alberta; 4 Cooking Lake Moraine; and 5 Willmore 

Wilderness in the Rocky Mountains. In either situation, Cooking Lake Moraine samples are most closely 

related to samples from northern Alberta and the Willmore Wilderness.  

 

Only 2 of 109 alleles (173 at Ma-2, and 136 at Lut604) were indicative of reintroduction success; 

they were found only in the CLM, Ontario, and Manitoba populations. These alleles occurred in few 

animals in the CLM but are common in Ontario samples (Table 1). We tested individual origins using the 

software Geneclass2 (Piry et al. 2004); no CLM individual showed a statistically meaningful departure 

from expectation for pure Alberta ancestry (lowest p-value = 0.05 which is not significant after 

correcting for small sample sizes). There were no alleles unique to the CLM, indicating that re-stocking is 

unlikely. Together, these results provide strong support for recolonization of the CLM from northern 

Alberta and Willmore Wilderness areas rather than successful reintroduction of founder individuals from 

Ontario or Manitoba.  

2.6 DISCUSSION 

Contemporary fisher samples from the Cooking Lake Moraine (CLM) show no significant genetic trace of 

reintroduced individuals. Some reintroduced individuals remained close to release locations for up to 

several months after reintroduction (Badry 1994). However, our data suggest few if any F1 individuals 

survived. Instead it appears that recolonization by Albertan individuals is responsible for the current 

presence of fisher on the CLM landscape. This result is not uncommon; a review of all fisher 

reintroductions (Lewis et al. 2012; Powell et al. 2012), demonstrates that 8/17 (47%) of reintroductions 

have been given a different reintroduction status once genetic testing for reintroduction success was 

performed (Table 2). Generally, reintroduction success is therefore lower than expected, but 

recolonization success may be higher. 

Cryptic recolonization has been observed in other commonly reintroduced mammals. In a 

similar example, Kruckenhauser and Pinsker (2004) review multiple Alpine Marmot (Marmota 

marmota) reintroductions and demonstrate that three contemporary Austrian populations are more 

closely related to proximal Austrian populations than putative founder individuals from France – 

evidence for recolonization across the Austrian Alps. Mirroring this result, Hicks et al. (2007) conclude 

that dispersal is much higher in Elk (Cervus elaphus) than previously believed because of the 
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astoundingly high genetic diversity within, and low genetic divergence between, western North 

America’s reintroduced populations. Statham et al. (2012) document the unanticipated continental 

recolonization of native Red Fox (Vulpes vulpes) compared to the perceived reintroduction success 

from European sources. Such examples highlight that many reintroductions are sub-optimal 

conservation strategies when compared to the ability of species to naturally recolonize historic ranges. 

Rather, facilitating functional connectivity may be a more effective conservation goal. 

Caveats 

Genetic data from populations that have undergone a bottleneck effect, such as reintroductions, must 

be collected within a limited period to avoid errors arising from mutation and/or genetic drift (Nei et al. 

1975). Within the CLM samples, two alleles suggested ancestry of eastern fishers (Table 1), but they may 

have been the result of a single microsatellite mutation (Waits & Paetkau 2005). Longer microsatellites 

mutate more frequently and rates can vary from 10-3 to 10-4 per locus per generation (Ellegren 2000). 

Ideally, genetic samples should be collected at multiple time points from reintroduction, source, and 

adjacent populations to document drift and mutation rates.  

 Post translocation genetic data does not distinguish the exact date, route, or mechanism by 

which individuals disperse and recolonize former ranges. However, our genetic analysis has reduced the 

possibility of reintroduction success from eastern populations, yet a contemporary population still 

exists. We can conceive two possible mechanisms to explain contemporary occurrence of fisher on the 

CLM: 1) “horse-power” reflecting unknown (and unsanctioned) translocation, and 2) “paw-power” 

reflecting multiple routes of natural dispersal.   

Our genetic analyses found eight of 109 alleles diagnostic of recolonization from northern 

Alberta. We find it unlikely two of these alleles (MP182 175 and Mvis72 258) could be explained by a 

mutation because they do not match the microsatellite allele sequence for that loci (Table 1). These 

alleles are therefore truly diagnostic, and suggest that dispersal happened recently and quickly across a 

long distance; it is unlikely that these alleles are the result of independent parallel mutations within 

each Albertan population. Fishers use areas of high forest cover compared to what is available (Badry 

1994; Koen et al. 2007; LaPoint et al. 2013; Koen et al. 2014). Dispersal may happen through unsuitable 

habitat if distances are small and within a home territory (LaPoint et al. 2013); average dispersal 

distances are typically less than 30 km for either sex (6 – 29 km; Aubry and Raley 2006; Lofroth et al. 

2010). For fisher, dispersal distance from either the North Saskatchewan River or the southern edge of 
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Alberta’s boreal forest to the CLM is large and was previously believed to be unattainable (Badry et al. 

1997; Proulx & Genereux 2009). However, mustelids can demonstrate amazing feats of dispersal. Carr et 

al. (2007) demonstrate that fisher recolonized eastern Ontario from the Adirondack Mountains – on the 

other side of the St. Lawrence River – and one case of wolverine (Gulo gulo) dispersal exists between the 

Rocky and Sierra Nevada Mountain Ranges (Moriarty et al. 2009). We cannot reliably distinguish 

between “horse-power” and “paw-power” mechanisms of provincial recolonization, but find a 

necessarily large-scale successful unsanctioned release unlikely. This research demonstrates that 

recolonization may be an important aspect of range stability. Given equal opportunity, landscape 

management that facilitates connectivity and natural recolonization may ultimately be a better use of 

conservation resources than reintroductions, at least in landscapes with proximal populations. 

2.7 CONSERVATION IMPLICATIONS 

If cryptic recolonization is misinterpreted as reintroduction success, it implies that our concept 

of functional connectivity may be flawed. Functional connectivity is a species-specific concept, and 

describes how genes, individuals, or populations move through a landscape (Goodwin 2003; Garroway 

et al. 2008; Luque et al. 2012; Rudnick et al. 2012). However, if individuals are recolonizing areas that 

were previously perceived to be functionally disjunct from the rest of the species range, then individuals 

(and their genes) are moving through landscape features more readily than predicted. We therefore 

recommend conservation biologists not underestimate the ability of species to recolonize former 

ranges. There may be situations where connectivity is detrimental to establishing populations, however, 

if there is even a small chance of natural recolonization we recommend investing the time and money 

into non-invasively sampling the genetic signatures of both reintroduced individuals and proximal 

populations across a series of time intervals. These genetic measurements inform landscape resistance 

modeling (Cushman et al. 2006; McRae et al. 2008; Rudnick et al. 2012; Zeller et al. 2012; Koen et al. 

2014, 2016; Elliot et al. 2014), and translocation evaluation (Bowman et al. 2016) including the need for 

assisted colonization in response to climate change (Rout et al. 2013). Such emerging applications in 

landscape genetics and wildlife management have applicable ramifications on future biodiversity 

through corridor and conservation area planning (Spear et al. 2005; Balkenhol et al. 2009; Schwartz et al. 

2010). The accurate quantification and perception of functional connectivity, which can be empirically 

documented through recolonization events, is paramount for decision making and implementing the 

best conservation management techniques.  
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 Our results from the CLM fisher reintroduction (Table 1), fisher reintroduction genetics in 

general (Table 2), and a sample of mammalian reintroduction events from the literature demonstrate 

the importance of employing genetic data for comparing reintroductions and recolonizations as optimal 

conservation strategies. We recommend that given the large amount of money, political capital, public 

buy-in, and hard work invested in reintroductions – in addition to the great conservation importance of 

their outcomes – that if recolonization is even minutely probable, reintroduction be treated as a 

conservation experiment, with genetic samples obtained and analyzed from all animals, non-invasive 

samples obtained from proximal and source populations, and results published that generate and 

disseminate an objective conclusion about reintroduction vs. recolonization success. Documenting the 

relative success of reintroductions and recolonizations across varying degrees of functional connectivity 

helps conservation biologists understand the efficacy of these conservation tools, thereby saving 

valuable conservation funds. Alternative conservation approaches – such as landscape management to 

facilitate functional connectivity – may be more effective long term, and moreover fix some of the very 

problems that led to extirpation in the first place. 
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3.1 PREFACE 

Management decisions that effectively maintain biodiversity require information on how 

species relate to their environment. Scientists gather this information in multiple ways (Scott et al. 2002, 

Williams et al. 2002). One rapidly expanding mode of gathering species data across large landscapes is 

through camera trapping (Burton et al. 2015, Steenweg et al. 2016). Many Albertan agencies 

(government, industry, NGOs, academia) have invested heavily in camera trapping over the last decade, 

and it promises to be a major platform for research in the future. Though an effective species sampling 

tool, scientists are still working to understand how camera traps sample populations, what these data 

mean, and how the information can be used. In this research, we used camera data and movement data 

from one species (fishers, Pekania pennanti) to better understand what camera data represent for 

species' use of the landscape, and how we can use this knowledge to better inform future biodiversity 

monitoring. This chapter is from a manuscript that has been submitted to the journal Ecological 

Applications in May 2017. 

3.2 ABSTRACT 

Animals move across space and through time. Biologists sample these dynamic point processes by 

collecting observations of species occurrence, where the data density has the potential to be biased by 

the observation method. These species occurrence data (SOD) – including presence-absence or count 

data – provide the foundation for much ecological research and conservation management. An 

increasingly popular method for collecting SOD of terrestrial mammals is camera trapping. These data 

are collected from stationary points, but result from the interaction between these points and the 
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dynamic location and movement of individuals on the landscape. Biologists attempt to analyze these 

interactions and their detection probability through species distribution and occupancy modeling. These 

models involve movement assumptions that are rarely tested or explicitly stated. To determine whether 

SOD better reflects species location or movement, we compared individual locations and movements 

from 14 GPS collared fisher (Pekania pennanti) with fisher occurrence across an array of 64 stationary 

camera traps. We competed a suite of generalized linear models and occupancy models to determine 

the relative contributions of species location and movement to SOD, occupancy, and detection 

probability across three temporal resolutions. We demonstrate that SOD, occupancy, and detection 

probability are more closely associated with variance in species locations (movement) than the cameras' 

proximity to those locations, despite the temporal resolution investigated.  

Synthesis and application: SOD are used globally for inferring ecological processes, species 

interactions, and understanding biodiversity shifts associated with climate and landscape change. 

Movement must receive greater consideration when planning, conducting, and interpreting these data 

to correctly infer ecological process driving data patterns. We discuss the ecological implications of our 

current misunderstanding of SOD, and make recommendations for future monitoring programs. 

3.3 INTRODUCTION 

 Animals move to obtain resources and avoid competition and predation. This dynamic space-

time process makes it difficult to determine exactly where individual animals are, and when; whether 

individuals over-lap in their space-use; and how cumulative individual locations defines the species’ 

distribution. Biologists study these concepts by collecting animal point locations through time, where 

the realized locations of individuals is a thinned point process assumed, but rarely tested, to be unbiased 

by the observation method (Royle et al. 2014). With rapid and observable biodiversity declines and 

shifts in species distributions in the face of landscape and climate change (Maxwell et al. 2016), the 

collection and interpretation of data that accurately reflects species occurrence is a leading conservation 

priority (Nichols and Williams 2006, Steenweg et al. 2016).  

High resolution animal locations, and inferred animal movements, have traditionally been 

documented through telemetry or tracking techniques (Kays et al. 2015). Telemetry is an expensive 

method that collects detailed individual location information but lacks the ability to document 

population or species changes across large spatial and temporal extents. The exciting development and 

rapid use of remote camera traps (CTs) allows these issues to be addressed by collecting species 
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occurrence data (SOD) across very large spatial and temporal scales (Burton et al. 2015), but they lack 

the high resolution of individual movement patterns that can be derived from radio- or GPS-telemetry. 

This trade-off in data resolution is acknowledged in terrestrial animal ecology, but the influence of this 

trade-off on the thinned point process is rarely tested. Instead the trade-off has been incorporated as 

assumptions inherent in statistical models that utilize data from stationary survey methods, such as CTs.  

CTs provide time-series SOD in the form of presence-absence or count data for inference of 

distribution (Liu et al. 2011), occupancy and detectability (MacKenzie et al. 2006, Burton 2012), 

abundance and density (Gardner et al. 2010, Chandler and Royle 2013), habitat selection (Fisher et al. 

2011), and ecological processes. Estimations derived from SOD assume that variation in species 

occurrence at the point in space represents variation in individuals’ locations and movement through 

time (Turchin 1998); but they implicitly assume individuals are distributed uniformly over some region, 

randomly move into the range of the observation apparatus, and are detected by it. Rarely do 

researchers using SOD data (such as CT surveys) state the assumed relationships between measured 

SOD variables (such as relative species abundance) and inferred ecological process (such as movement) 

but this area of inquiry represents one of the most important areas for CT survey improvement (Burton 

et al. 2015). Several studies attempt to incorporate movement data into SOD estimates by either 

combining telemetry and SOD datasets (Royle et al. 2009, Popescu et al. 2014) or by using occupancy 

models to estimate detection probability, wherein movement is inferred from variation in the detection 

histories (MacKenzie and Kendall 2002, MacKenzie and Nichols 2004). However, the question remains: 

Does SOD better reflect the geographic location of mobile species in space and time, or where species 

move in space and time?  

As a simple way to examine this question and test the assumptions inherent in SOD, one dataset 

representing individual locations and movement could be used to predict variation in SOD recorded by 

another. This is an examination of the thinned point process wherein ‘true data’ – location and 

movement data – explain a sub-sample of those ‘true’ data – the frequency of species detections – at a 

fixed point. Species location and movement data relative to CTs can be quantified as the mean (i.e. 

average geographic location), and standard deviation (i.e. variation in locations, or inferred movement) 

of distances between GPS fixes and each CT (Figure 1). We refer to these hereafter as ‘GPS metrics’ and 

use them to ask two questions; 1) do GPS metrics account for variation in SOD collected from stationary 
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surveys, such as CTs (Figure 1), and 2) is this relationship affected by the temporal resolution of 

summarized SOD (survey, monthly, or weekly occurrences)? 

We use location data collected from fisher (Pekania pennanti) GPS-telemetry paired with SOD 

collected from a CT array overlapping collared fishers to examine whether individual locations in space 

and time, and variation in those locations (movement), explain the frequency of SOD across three 

temporal data resolutions (survey, monthly, and weekly occurrences). We expect the frequency, and 

probability, of animal detections to be more closely related to animal movement than to the geographic 

location of animals and for this relationship to increase in strength with temporal resolution from survey 

to weeks. CT studies to date rely on SOD collected from CTs being representative of animal locations in 

space and time, make implicit assumptions about movement, and infer ecological processes there from 

(Burton et al. 2015). We seek to explicitly quantify the contribution of animal movement (variation in 

locations) to this relationship and demonstrate how the inference of ecological process would change if 

movement, rather than locations, is the best predictor of SOD. 

3.4 MATERIALS AND METHODS 

 Fisher are a medium-sized (2.2-7.0 kg) Mustelid native to northern North American forests from 

the western Cordillera to the eastern seaboard (Powel 1982). They have moderate body and home 

range size (Lindstedt et al. 1986) representative of mammal species investigated in previous CT surveys 

(Burton et al. 2015), making them a reasonable model for evaluating location and movement 

contributions to CT SOD. Fisher occurrence was sampled in the central east region of Alberta, Canada, 

an area known as the Cooking Lake Moraine (CLM; Figure 2) which supports a diverse mammal 

community (F. Stewart and J. Fisher, unpublished data). This 1,056 km2 landscape of rolling knob and 

kettle topography is dominated by small wetlands, with trembling aspen (Populus tremuloides), balsam 

poplar (Populus balsamifera), and scattered pockets of spruce (Picea glauca and P. mariana). It is a 

patchwork of exurban development, agriculture, protected forested areas, and privately owned green 

space.  

 We deployed 64 camera trap (CT) sites in a 4 x 4 km2 systematic grid cell array across the CLM 

(Figure 2). At each site the camera photographed the area surrounding a tree baited with ~5 kg of 

beaver meat and a commercial scent lure (O’Gorman’sTM Long Distance Call). Fisher occurrence at each 

CT was recorded using ReconyxTM infra-red cameras (models PC900 and PC85). CTs were deployed from 

December 16th 2015 through April 4th 2016 and checked once monthly. We quantified CT SOD as fisher 
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presence/absence during the whole survey duration (0/1), and counts of fisher presence across each 

month (December through March; 0 – 4), and weeks (December through March; 0 – 15). 

We live-trapped and GPS-collared 14 fisher individuals from November 2015 through April 2016. 

Animals were captured in covered cage traps (Tomahawk 109 live-trap, Tomahawk, WI), sedated with a 

combination of ketamine (100 mg/ml, 12mg/kg) and midazolam (5 mg/ml, 0.3 mg/kg), vital rates 

monitored, and fitted with GPS tracking collars (E-obs Collar1A; Grünwald, Germany). Collars contained 

a GPS microchip, a tri-axial accelerometer and ultra-high frequency transmitter for telemetry and data 

download. The GPS was programmed with a 5-minute fix schedule when the animal was moving greater 

than 10 cm/s.  We retrieved data from 10 animals (5 male:5 female).  

All data were collected under Canadian Council of Animal Care permits approved by InnoTech 

Alberta (2070M-A02/048/15-P01), and the University of Alberta (AUP00000518) Animal Handling and 

Care Committees.  

3.5 STATISTICAL METHODS  

We ask whether the location and movement of fishers is related to frequency of detection of 

(generic) fishers – not specific individuals. Therefore, we calculated summary statistics of the distances 

between all GPS fixes and each CT (Figure 1); we measured the mean, standard deviation, minimum, and 

maximum distance (m) between all GPS collar fixes and each CT site using the Generate Near Table tool 

in ArcGIS 10.4.1 (Environmental Systems Research Institute, Redlands, CA). We refer to these values as 

our ‘GPS metrics’. The mean GPS metrics represent the average fisher locations relative to CTs. The 

standard deviation GPS metrics represent the variation in fisher locations (ie. species movement) 

relative to CTs. We tested for correlations between GPS metrics to avoid using confounding variables in 

our statistical models. We conducted two separate analyses to investigate; 1) the relationships between 

SOD, species location, and species movement and, 2) the influence of detection probability on these 

relationships. 

The effect of movement and temporal resolution on species occurrence data 

 We hypothesized that (naïve) species occurrence data (SOD) is more closely related to animal 

movement than the geographic location of animals. To test this hypothesis we regressed SOD against 

GPS metrics using generalized linear models in R (R foundation for statistic computing 2017) to quantify 

the contribution of species location and movement to SOD. We expected that a negative relationship 

between the minimum GPS metric and SOD would be the result of a sampling artifact – fisher must be 
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close to the CT to be detected, but this is not particularly biologically informative. If SOD is reflective of 

animal locations, then we expect a negative relationship between SOD and the mean GPS metric: 

animals close to a CT are most likely to be photographed, whereas animals far from a CT are less likely. If 

SOD is reflective of animal movement, then we expect a negative quadratic relationship between SOD 

and the standard deviation (variation) of GPS metrics: high or no variability in animal locations may 

result in few CT photographs, whereas intermediate variation in animal locations should result in more 

CT photos. 

 

Figure 1. Species occurrence data is the result of species location and movement. To tease apart the 
relative contributions of these two predictors, the minimum, mean, maximum, and standard deviation 
of the distance between a camera trap and GPS fixes can be measured (A), and regressed against SOD. If 
mean distances and standard deviations are small, then the GPS data are clustered around the camera 
trap and will likely result in a detection, while large mean distances and standard deviations 
demonstrate dispersed data and likely result in no detection (B). 
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To investigate the effects of temporal resolution on these relationships, we competed suites of 

models representing the above two predictions with SOD measured as survey presence absence (0/1), 

monthly counts (0-4), or weekly counts (0-15). Survey presence/absence data were modelled using a 

binomial link function in R. Monthly count data required a multinomial regression in the R package nnet 

(Venables and Ripley 2002), and weekly count data was poisson distributed.  Suites of models within 

each temporal resolution were competed using Akaike information criterion (AIC; Burnham and 

Anderson 2002). Results are presented as mean ± standard error unless otherwise specified.   
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Figure 2. Fisher GPS fixes from 10 individuals are overlaid on the spatial distribution of camera trap sites 
deployed through winter 2015/2016 on Alberta’s Cooking Lake Moraine. 
 

The effect of movement and temporal resolution on detection probability 

 We hypothesized that the probability of animal detections is more closely related to animal 

movement than it is to animal geographic location. To test this hypothesis we used an occupancy 

modeling framework to quantify the contribution of animal locations and movement to species site 

occupancy and detection probability (Mackenzie et al. 2006). Occupancy models use serial detection 
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non-detection data (a series of zeros and ones that represent species absence and presence at each 

study site across multiple site surveys) to quantify the probability that species absence is not a false-

absence (i.e. detection probability; p). Species occupancy (Ψ) – the probability of a site being occupied 

by a species – is adjusted by the detection probability. Detection probability can vary among surveys 

(MacKenzie et al. 2006). Obtaining the serial detection/non-detection data needed for these models 

requires study sites to be visited multiple times and at regular intervals. We competed a null model, 

Ψ(.)p(.), against models with all possible combinations of our GPS metrics as either occupancy (Ψ) 

and/or detection probability (p) covariates. We expected models involving animal movement (standard 

deviation GPS metric) as a detection covariate to outperform models involving animal locations (mean 

GPS metric) as a detection covariate. 

 To investigate the effects of temporal resolution – or how frequently a site is visited within an 

occupancy framework – on occupancy and detection probability, we competed two suits of models 

where species detection histories were composed of either four monthly (i.e. 0101) or 15 weekly (i.e. 

01100101110101) detection non-detection histories. All occupancy models were performed in 

PRESENCE software v11.7 (Hines 2006) and competed in an AIC framework (Burnham and Anderson 

2002). Results are presented as mean ± standard error unless otherwise specified.   

3.6 RESULTS 

Sixty-four cameras were deployed for a total of 102 days (6,528 trap days), and collected 95,128 

photos from December 2015 through early April 2016. Of these photos 12,156 were of fisher, with 2,032 

clearly containing collared individuals.  From 10 GPS-collared individuals we obtained a total of 28,088 

fixes, with 2,808 ± 1,137 fixes per individual. GPS fixes were on average 15,188 ± 1,281 m away from any 

CT (Figure 2). Microsatellite analysis from hair samples collected throughout the study revealed that at 

least 32 fisher occupied the CLM during the winter of 2015/2016 (Stewart et al. in revisions). We 

therefore obtained GPS information from 31% of the minimum known population. Mean, standard 

deviation, minimum, and maximum GPS metrics were all highly correlated. We therefore did not include 

more than one GPS metric as a predictor variable within each of our below models. 

The effect of movement on species occurrence data 

Fisher SOD were best explained by GPS metrics representing animal movement (standard 

deviation GPS metric), rather than location relative to the camera (mean GPS metric). As predicted, a 
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quadratic relationship with movement out performed all linear relationships. Fisher geographic location 

(mean GPS metric) was never a better predictor than the null model (Figure 3).  
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Figure 3. Generalized linear models across three temporal resolutions all demonstrate that the standard 
deviation of the distances between GPS collar fixes and camera traps best predict the probability of 
species presence absence, monthly counts, and weekly counts. Models presented in panel (A) include 
fisher SOD as the response variable, with predictors of: 1- null model, 2 – mean GPS metric, 3 – standard 
deviation GPS metric, 4 – standard deviation quadratic GPS metric, and 5 – mean GPS metric. Panels (B) 
through (C) demonstrate the top model from panel (A) of each temporal resolution. 
 

The effect of movement on detection probability 

Fisher detection probability was best explained by GPS metrics representing animal movement 

(standard deviation GPS metric), rather than geographic location relative to the camera (mean GPS 

metric). Fisher were observed on 43 CTs, which translates to a naïve occupancy estimate of 0.67 (43/64 

sites). We competed a total of 45 monthly, and 45 weekly, models involving all possible combinations of 
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GPS metrics as both occupancy (Ψ) and/or detection probability (p) covariates. Top models all involved 

our movement GPS metric as detection probability covariates, and only involved our geographic location 

GPS metric as an occupancy covariate when movement was also a detection covariate. 

The effect of temporal resolution on species occurrence data and detection probability 

The direction of SOD relationships predicted by animal movement were consistent across all 

temporal resolutions (survey, monthly, and weekly; Figure 3). As predicted, relationships measured at 

the weekly temporal resolution were stronger than relationships measured at either the monthly or 

survey temporal resolutions. Modeled occupancy of fisher at sites across the CLM varied slightly with 

temporal resolution (monthly: Ψ = 0.68, p = 0.65; weekly: Ψ = 0.64, p = 0.32). AIC ranking of occupancy 

models differed between monthly and weekly temporal resolutions, however, top models always 

involved the standard deviation GPS metric as an occupancy and/or detection probability covariate. For 

monthly frequencies of fisher detections, detection probability is not dependent on survey-specific 

fisher movement (ER = 3.87), and fisher occupancy varies with the maximum GPS metric (ER = 70.1). For 

weekly frequencies of fisher detections, detection probability is dependent on survey-specific fisher 

movement (ER = 1.96), and fisher occupancy varies with movement (ER = 9.3). 

3.7 DISCUSSION 

 Species movement, rather than species location, best predicts species occurrence data (SOD). 

This relationship holds despite temporal resolution of the data (survey presence-absence, monthly 

counts, or weekly counts; Figure 3). The average location of species relative to the survey device does 

help to explain site occupancy when combined with a species movement covariate, however, the 

detection probability is strongly influenced by solely the movement variability of the species (Table 2). 

Together, these results provide strong evidence that the thinned point process associated with 

collecting SOD from camera traps (CTs) better represents where species move, rather than the assumed 

prediction of where species are.  

 Movement will vary across individual, population, species, and landscape characteristics. Here 

we present movement variations from a mammal representative of the species encompassed in camera 

trap (CT) studies to date (Burton et al. 2015), however, we recognize that the relative influence of 

movement on species occurrence data will differ between studies and species investigated. This is an 

important point to consider when interpreting SOD from multiple studies; the ecological processes and 

inferred implications derived from each study may differ. To generate more robust conclusions on the 



 
Moraine Mesocarnivores Project [37]  
May 2017 

 
 
 

relationship between SOD and movement variation, we recommend that the analyses presented here 

be repeated in other systems. 

 We utilized occupancy models to quantify the contributions of species location and movement 

to detection probability. However, we knowingly make several common violations of occupancy 

assumptions: closure and site independence (McKenzie et al. 2006). The fisher population studied here 

demonstrates high genetic connectivity with adjacent provincial populations (Stewart et al., in review), 

but it is unlikely that dispersal between populations occurred during our winter study period, or that 

juveniles were detected (Powel 1982) on our CTs; therefore, we assume this population to be closed for 

the period investigated here. CTs were not independent within this study as fisher GPS tracks 

overlapped multiple camera sites, and multiple fisher have been detected through non-invasive genetic 

tagging at many camera locations (F. Stewart and J. Fisher, unpublished data). We do not anticipate the 

effects of these violations to be greater than the benefits of estimating movement and location 

contributions to detection probability, as presented here. 

 Using attractants in CT studies is common with bait and scent lures composing 22.9% and 9.0% 

of CT studies to date, respectfully (Burton et al. 2015). If bait is evenly distributed on the landscape it 

should not have a significant effect on species habitat use or movement patterns any more than 

temporal variability in natural food sources. Here, we do not anticipate the bait to have drastically 

affected the movement ecology of CLM fisher as individual GPS tracks spanned multiple CT sites, GPS 

tracks displayed intrasexual territoriality as is common for this species (Powell 1982), and preliminary 

spatial capture-recapture models (Burgar et al. in prep) demonstrate similar population density as other 

fisher studies (Powell et al. 1994; Koen et al. 2007; Popescu et al. 2014). However, results may vary 

when comparing studies with baited surveys to studies without baited surveys, and one explanation 

may be the presence and type of bait used. 

3.8 IMPLICATIONS FOR ECOLOGY  

 Wildlife surveys commonly aim to monitor more than one species. CTs, in particular, are 

explicitly used for this purpose; a quarter (26.2%) of studies to date use CT images to estimate the 

density of multiple species (Burton et al. 2015). Our results suggest that using a single CT sampling 

design for obtaining SOD from multiple species may result in inaccurate inference of ecological process, 

as SOD varies with species mobility. For example, within one study investigating mesocarnivore 

occurrence on camera traps, the relative abundance of coyote (Canis latrans) may be inferred as being 
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higher than American marten (Martes americana) because more photos of coyote than marten were 

obtained. Although the space-use of both species relies on many factors, coyote generally have larger 

territories, longer step lengths, and move more within a single day than marten. Given our results 

presented here, the greater movement variability of coyotes is the most likely explanatory factor for 

inferred increases in coyote relative abundance when compared to marten. 

 The probability of species detection in multi-species surveys is also likely to vary with species 

movement. In the above example, we would expect that coyote detection probability would be greater 

than fisher detection probability, not because of differences in species density or abundance as is 

commonly highlighted in the literature (Royle et al. 2013), but because of differences in the movement 

ability of both species. This concept needs to be extended across all species monitored within a multi-

species survey, and receive much greater consideration when interpreting and modeling SOD. 

 Using data collected from past species surveys, whether from CTs or other stationary methods, 

involves movement considerations for data interpretation. However, incorporating movement 

considerations in future CT studies will greatly enhance our understanding of what each species SOD 

actually represents. We demonstrate that SOD is best predicted by a negative quadratic relationship 

with species movement variability. This relationship suggests that the number, and spacing of CTs will 

need to correspond with not only the amount of movement that a typical species displays, but the 

variability of within-species or within-study movement. Ideally, the number and spacing of camera traps 

hits the peak of this negative quadratic relationship – too few or too many camera traps, or traps that 

are spaced too wide or too closely together, will underestimate SOD. As such, species with small 

variation in movement may require more CT sites in close clusters, while species with larger variation in 

movement will dispersed CTs. CT site placement and density could be scaled by species home range size 

or average step length. The discussion of these concepts are beginning within the scientific and 

management literature (Pease et al. 2016), however we strongly endorse their quick implementation.  

 Movement and location data, as shown here, provides the ability to inform spatial density 

models, which assume a negative logarithmic relationship between the probability of detection and the 

centre of habitat use (a.k.a. “activity centre”; Royle et al. 2013). Spatial capture-recapture models (and 

species occurrence data in general) make the explicit assumption that "thinning" between actual 

process (animal locations) and observed process (camera detection rates) happens with distance 

between the animal locations and the camera. Here, we tested that assumption with our mean GPS 
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metric and found that distance tells only part of the story, and not the biggest part – the dispersion of 

animal locations matters most. Most CT studies estimate density from capture-recapture methods 

(Burton et al. 2015), and our results presented here therefore have profound implications on future 

density estimations. 

3.9 RECOMMENDATIONS FOR FUTURE MONITORING PROGRAMS 

  Future CT research, and monitoring programs in general, need to place increased consideration 

into the movement ecology of the focal species(s) prior to survey deployment. The results presented 

here suggest that obtaining SOD and the probability of detection varies with species movement rather 

than species average geographic location. For multi-species surveys, we recommend that grid cell size 

vary with the smallest expected home range, that species with either very small or very large home 

range size receive a disproportionate number of survey stations relative to species with intermediate 

home range size within each study, that landscape fragmentation and resistance values be considered 

when estimating species home range size, and that acknowledgement of the probability of detection 

varying with home range size be considered an important aspect of CT deployment and data analysis. 

Including multiple bait types to increase the detection probability of multi-species surveys, group subset 

clusters of cameras to obtain relative detections between species of large and small home ranges, or use 

species-specific survey methods for each species within a multi-species survey may increase detection 

probability for each target species. For example, using baited camera traps may be appropriate for 

elusive species (e.g. wolverine (Gulo gulo)), but may not reflect the abundance or density of conspicuous 

species within the study area (e.g. snowshoe hare (Lepus americanus)). Live-trapping, snow tracking, 

plate tracking, or GPS collaring may be more appropriate for conspicuous species. After data collection, 

researchers should report the correlation value of SOD, and detection probability (p), with expected 

species home range size(s) to justify the link between survey deployment and species life-history within 

their study. 

Modeling projections for biodiversity response to shifts in landscape and climate are based on 

SOD, and assume to reliably predict where species occur. We demonstrate that these projections may 

be more closely related to species movement rather than species location. This result has profound 

implication on how we interpret SOD collected from stationary surveys, distribution model projections 

and the inferred ecological processes that govern these systems, and ultimately how to anticipate 

species response to landscape and climate change. We advocate for increased consideration around 
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movement assumptions when deploying SOD field methods, when interpreting SOD, and when 

incorporating SOD into models of distribution, occupancy (MacKenzie et al. 2006), abundance, and 

density (Royle et al. 2013). Ultimately, movement ecology of the target species(s) needs to be prioritized 

when quantifying biodiversity from stationary methods. 
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4.0 MAMMALAN BIODIVERSIT Y IN CENTRAL ALBERTA'S HEARTLAND  

4.1 PREFACE 

This component of the Moraine Mesocarnivores Project is the core objective of the study. 

Alberta's Land Use Framework (LUF) – the central piece of policy for land-use planning to conserve 

biodiversity – explicitly assumes that most of Alberta's biodiversity will be maintained on "working 

landscapes". These landscapes are mosaics of forested protected areas, semi-forested private lands, 

agriculture, transportation, petroleum extraction, and residential infrastructure. This central assumption 

of the LUF has never been explicitly tested. The Cooking Lake Moraine is, in many ways, a landscape-

scale model of the many interacting land-uses in Alberta, and an ideal place to test these assumptions. 

Our goal was to examine how multiple mammal species were distributed across this landscape, and how 

their relative abundance and persistence related to its diverse kinds of land-use. This component is the 

last to completed, and will be finished in 2017-2018. 

4.2 INTRODUCTION 

Conserving biodiversity and ecological integrity is a primary purpose of parks and protected areas 

(PAs) worldwide, though there is great variability in how well PAs are achieving this goal(Parrish et al. 

2003). In Alberta, Canada, the “working landscape” has been impacted by agriculture for over a century; 

forest harvesting for over fifty years; and more recently by rural residential development, and 

petroleum exploration and extraction. Each resource sector is accompanied by marked increased in road 

and trail access. The cumulative effects of multiple forms of development are widespread across 

Alberta, contributing to declines of woodland caribou (Sorensen et al. 2008, Hervieux et al. 2013), range 

contraction of wolverines (Fisher et al. 2013), and a suite of other ecological impacts (Schneider et al. 

2006). Growing landscape impacts necessitated a provincial strategy to plan for land-use with a goal of 

maintaining biodiversity - Alberta's Land-use Framework1 (LUF). Protected areas are a key component of 

the LUF, which is designed to balance environmental sustainability with economic opportunity.  

                                                      
 
 
 
1 https://www.landuse.alberta.ca/Documents/LUF_Land-use_Framework_Report-2008-12.pdf 
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The LUF assumes that Alberta biodiversity will be maintained by a combination of PAs and the 

working landscape, functioning together to sustain viable wildlife populations and biotic communities. 

However, this assumption only holds if (1) PAs and adjacent patches of working landscape are 

functionally connected – operating together to support animal populations; and (2) large intact 

landscapes and PAs are functionally connected over large scales to allow immigration and emigration, 

and hence gene flow, among populations (Pulliam 1988, Pulliam and Danielson 1991, Dunning et al. 

1992, Goodwin and Fahrig 2002). These assumptions have never been tested for Alberta, but are crucial 

to maintaining ecological integrity and biodiversity of a landscape. 

The biodiversity value and conservation role of the many small protected areas common throughout 

Alberta – in addition to protected parcels owned by NGOs – has always been controversial. Most small 

PAs are embedded within mixed-use landscapes – patchworks of forested, protected areas, small-scale 

agriculture, rural residential areas, and natural fragments on private land. How valuable are these PA 

islands for maintaining biodiversity and ecological integrity?  

In fact, increasing evidence shows they can be extremely valuable, particularly when patches of 

natural habitats are connected with one another. It is true that habitat fragmentation and loss adversely 

affect the persistence of many wildlife species (Andren 1994, Fahrig 1997, 2003). However, habitat 

fragmented is not always lost. Mixed forested and agricultural landscapes can support viable and 

persistent wildlife populations in woodland patches within agricultural landscapes (Middleton and 

Merriam 1983, Henderson et al. 1985, Bennett et al. 1994), provided habitat patches remain sufficiently 

connected for wildlife species (Taylor et al. 1993). In fact, agricultural habitat may actually provide 

complementary or supplementary resources to species living in wooded patches (i.e., prey), facilitating 

their persistence (Dunning et al. 1992, Fisher and Merriam 2000). Just as importantly, emerging research 

shows that protected areas can act as catalysts for integrated conservation between government and 

private lands in mixed-use landscapes (Miller et al. 2012). Both ecologically and socially, small protected 

areas may be significant, even essential, in maintaining biodiversity in mixed-use landscapes. 

Measuring all biodiversity is a daunting task but mammals are a useful biodiversity indicator. Mixed-

use landscapes may be particularly suited to mammalian mesocarnivores – mid-sized mammalian 

predators, such as marten, fishers, foxes, coyotes, lynx, and raccoons – which may persist in forest 

landscapes with a degree of agricultural incursion or fragmentation. Working landscapes often have 

reduced or absent top predator populations (such as bears and wolves). In the absence of top predators, 



 
Moraine Mesocarnivores Project [43]  
May 2017 

 
 
 

mesocarnivores are released from predation and competition, and their populations can increase (Prugh 

et al. 2009, Terborgh and Estes 2010). Moreover, fragmented landscapes often support diverse small-

mammal populations, which provide abundant prey for mesocarnivores. Where wooded patches are 

large enough to provide breeding habitat, but are interspersed with “novel” agricultural patches that 

provide a resource subsidy, fragmented forest landscapes may support persistent populations of 

mesocarnivores. The landscape features allowing species’ persistence is both landscape and species-

specific (Fisher et al. 2005), preventing generalities from other parts of the continent. In western 

Canadian landscapes, we know little about mesocarnivore species persistence in fragmented, mixed-use 

forest-agricultural systems, but this information is vital to evidence-based decision-making designed to 

maintain ecological integrity within small protected areas.  

We seek to help supply this information by examining the diversity, distribution, and connectivity of 

mesocarnivores on the Cooking Lake Moraine in central Alberta: a matrix of protected areas, private 

land with natural habitats, and areas of significant anthropogenic disturbance. We ask several related 

questions: 

1. What mesocarnivore species occupy this mixed natural-agricultural system? 

2. What landscape elements – including natural and anthropogenic features – positively or 

negatively affect mammal occurrence and diversity? 

3. How functionally connected are PAs within this landscape? Can animals move among disjunct PAs 

to form functional home ranges? 

4. How functionally connected is the CLM to other forested landscapes to the west and north, 

separated by intensive development? Specifically, are fishers (Pekania pennanti) occurring on the 

Moraine more genetically related to re-introduced ancestors from Ontario and Manitoba, or is 

there evidence of genetic contribution from adjacent landscapes indicating functional 

connectivity? 

4.3 METHODS 

Study Area 

 The Cooking Lake Moraine is approximately 1,500 km2 of primarily aspen forest with patches of 

white spruce, open meadows, and small permanent water bodies (Pybus et al. 2009; Patriquin 2014). 

This (relatively) intact and heterogeneous complex sits in a matrix of agricultural land. Our study area 

covers the moraine and its agricultural environs, an area over 1,060 km2 in size. The moraine is, to a 
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large degree, spatially disjunct from tracts of contiguous forests to the north and west. Several parks 

and protected areas cover this landscape, limiting development and human activity (Figure 1). As such, 

the CLM may be an important source of biodiversity for the entire region. Elk Island National Park, 

within the moraine, is a fenced park with large populations of ungulates, wolves, coyotes and other 

mesocarnivores, as well as diverse bird and plant communities. This Park, together with the many 

provincial protected areas and conservation properties (i.e., ACA, DU, ABFG, EALT and NCC) on the 

moraine, support high biodiversity, but an empirical, multi-species analysis of the composition of the 

mammalian community has not been conducted. 

 

Species sampling 

Mesocarnivore occurrence is being surveyed using a multi-method approach(Nichols et al. 2008) 

involving a combination of non-invasive genetic tagging (NGT) (Waits and Paetkau 2005) via hair 

Figure 1. Mesocarnivore 
diversity is being sampled 
within a systematic design on 
the Cooking Lake Moraine 
area of Alberta, Canada. 66, 
4km x 4km sampling cells were 
designated in GIS. Within 64 of 
these cells, a sampling site was 
subjectively placed within a 
forested area a minimum of 1-
ha in size. 
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sampling and infra-red remote cameras (IRCs) (O'Connell et al. 2011). This double-method sampling has 

proven effective for mammals elsewhere in Alberta (Fisher et al. 2011, Fisher et al. 2012, Fisher et al. 

2013) and has a high probability of detecting mesocarnivores, including fishers (Fisher and Bradbury 

2014). Hair samples for NGT were collected using Gaucho barbed wire wrapped around a tree baited 

with beaver fat and O’Gorman’s scent lure. At each station, we also deployed one Reconyx™ infrared-

triggered digital camera. Cameras are placed ca. 6-10 metres from the tree such that the camera’s 

detection cone and field of view includes the NGT hair trap and the area surrounding it. DNA from 

collected hairs have been extracted and analysed to identify species using mitochondrial DNA (mtDNA), 

which is then compared against a DNA reference library of all known mammal species in the region. For 

fishers, individuals and gender are identified using microsatellite (nuclear DNA) analysis. Individual 

capture histories can be used in mark-recapture models to estimate population sizes and densities. 

NGT provides unique information, but may underestimate species’ occurrence. Absence of hair may 

result from (1) an absent individual, or (2) a present, but undetected individual. Such imperfect 

detection has ramifications for estimates of species occupancy, density, and habitat use (MacKenzie et 

al. 2002, MacKenzie et al. 2006). To maximise detectability, we are surveying mesocarnivore occurrence 

using camera traps and hair traps. Cameras are triggered by heat-in-motion and are set to take a series 

of 5 photographs at each detection event. Images containing human activity are permanently deleted 

immediately; following this, all other images are being triple-redundant stored for analysis. Images are 

analysed and summarised for species presence, creating a serial detection-nondetection dataset for 

each site. Camera data on the mesocarnivore community will inform landscape-scale species-

distribution models. 

4.4 RESULTS 

We deployed a total of 64 sampling sites across the Cooking Lake Moraine and sampled them 

monthly from November 2013 to June 2014, and this year from November 2015 to April 2016. We have 

collected 230,118 photos and 750 hair samples across the study area.  

4.4.1 Mammal communities 

Moose (Alces alces), white tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus) 

red fox (Vulpes vulpes), coyote (Canis latrans), wolf (Canis lupus), least (Mustela nivalis), short-tailed 

(Mustela erminea) and long-tailed (Mustela frenata) weasels, porcupine (Erethizon dorsatum), striped 
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skunk (Mephitis mephitis), wood bison (Bison bison athabascae), elk (Cervus canadensis), black bear 

(Ursus americanus), striped skunk (Mephitis mephitis), cougar (Puma concolor), and domestic animals 

such as the domestic dog (Canis lupis familiaris) were also detected, illustrating that mammalian 

diversity is high across this landscape.  

We used R statistical software to generate bubble plots of relative abundance for each species 

(Figure 3). The distribution and relative abundance of each species varied widely across the study area. 
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Figure 3. The distribution of mammals varied markedly across this mixed-use landscape. Each dot is a 
camera trap. The numbers of observations of each species are scaled to the size of the bubble around 
each site, as a visual index of relative abundance. Large carnivores were very rare, whereas 
mesocarnivores were abundant and widespread. Moose and both deer species occupied much of the 
landscape, suggesting the importance of different natural and anthropogenic features in maintaining 
this community. 
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4.4.2 Fisher occupancy 
 

Camera surveys, like any survey, are challenged by the possibility of false absences: failing to detect 

a species that is, in fact, present. To assess the reliability of camera data, we must first estimate the 

probability of detecting that species if it is present at a site (MacKenzie et al. 2002). The frequency of 

repeated species detections at a camera can be used much like a mark-recapture history to estimate this 

probability of detection. Given this probability, we can correct for potential false absences and thus 

more accurately estimate the probability that fishers occupied a site during a sampling period. This 

probability of site occupancy takes into account missed detections, and because it describes the 

likelihood that a fisher uses a site, it is a more ecologically meaningful measure of a species’ site-use 

than simply presence or absence, which is an all-or-none measure. Detectability and occupancy are 

estimated using hierarchical occupancy models (MacKenzie et al. 2006), which are gaining widespread 

use for examining species’ distributions ranging from wolverines (Fisher et al. 2013) to salmon (Fisher et 

al. 2014a) and grizzly bears (Fisher et al. 2014b). 

Occupancy is not a static measure; it is expected to change through time (MacKenzie et al. 2003). 

For example, sites without fisher can become occupied in the following season, whereas sites with 

fishers in one season may have no fishers in the next season, as they die, or emigrate to better habitat. 

Examining how occupancy changes among seasons helps us better understand the influence of 

environmental conditions on fisher distribution. 

We used multi-season occupancy models (MacKenzie et al. 2003; MacKenzie et al. 2006) for a 

preliminary assessment of detectability and occupancy of fishers from 2014 camera data; we are 

currently sorting 2016 data and will conduct another assessment with both 2014 & 2016 data. We 

assumed that each month of camera sampling represents a distinct and independent survey. We 

assumed that fisher occupancy could change between seasons, however, as individuals give birth, die, 

immigrate or emigrate between patches. We therefore divided the sampling period into 4 seasons, with 

2 monthly surveys within each: Nov-Dec (autumn), Jan-Feb (winter), Mar-Apr (breeding), and May-Jun 

(kit emergence). Each season is assumed to be closed to changes to occupancy at the species level – that 

is, fishers will not disappear completely from a site, appear if absent, within each season, but can change 

between seasons. The assignment of seasons here is somewhat arbitrary and can change to suit species 

biology.  
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We also assumed the probability of detecting a fisher on camera – given it is present – could stay 

the same, vary among surveys or seasons, or vary monthly within seasons. Finally, we tested whether 

fishers were more likely to occupy sites within protected areas or outside protected areas. We ran a 

model with each set of assumptions, and ranked each model by its AIC score (Akaike’s Information 

Criterion) – a measure of how well each model fit the data34. AIC scores weights were normalised to sum 

to 1.0 to create AIC weights, analogous to the probability that a model best explained the data, 

compared to other models in the set. 

In the coming year, landscape structure will be 

quantified from available GIS data. We will use a 

combination of occupancy modelling (MacKenzie 

et al. 2002; 2006) and generalized linear modelling 

(Farraway 2004) to examine relationships between 

species occurrence and habitat features. Multiple 

competing hypotheses will be represented as 

multiple statistical models, which we will rank 

(Burnham and Anderson 2002) based on how well 

each model fits the data. The best-supported models indicate those natural landscape features and 

agricultural patches that best explain mesocarnivore occurrence on the moraine, and model parameter 

estimates will allow us to map the probability of occurrence of species across this landscape. 

The probability of detecting fishers within a month-long camera survey (given they were present at 

a site; p) varied across time. The probability of fisher occupancy was also highly variable across the study 

area. The best-supported model, which carried almost all of the weight of evidence (AICw = 0.9997), 

indicates that p was different for each monthly survey (Table 1). There was a low probability of detecting 

fishers on cameras at the onset of the study, in November and December. This probability improved 

throughout the winter, peaking in February and March. Detectability in May and June was very low. 
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After accounting for imperfect detectability, there was a significant difference in fisher occupancy 

inside and outside of protected areas. Fishers were ~ 4.5 times more likely to occur at camera sites 

within protected areas (ψ = 0.76, s.e. = 0.11) than sites outside of protected areas (ψ = 0.16, s.e. = 0.07). 

There was no evidence that fisher occupancy varied among seasons, and their distribution was stable 

throughout the study period. These are preliminary models without spatial covariates derived from GIS 

data, and with assumptions about seasons and surveys that deserve scrutiny (Burton et al. 2015). These 

models will be supplemented with data from the 2015-2016 field season, and with data quantifying 

anthropogenic and landscape features, to yield final results of fisher and competitor mesocarnivore 

species occupancy across the CLM across two years. 

 

4.4.2 Fisher movement 

We live-trapped and GPS-collared 14 fishers. Of these, we obtained GPS telemetry locations from 10 

(5 males, 5 females) individuals.  From these limited observations we cautiously see that fishers moved 

Detectability 
varies: 

Occupancy 
varies: 

AIC ΔAIC AIC 
weigh
t 

Model 
Likeliho
od 

# 
parameters 

Constant Constant 472.45 89.97 0.00 0.00 3.00 
Seasonally Constant 428.63 46.15 0.00 0.00 6.00 

Among survey 
months 

Constant 398.54 16.06 0.00 0.00 10.00 

Within seasons Constant 474.37 91.89 0.00 0.00 4.00 
Constant Protected areas 461.44 78.96 0.00 0.00 4.00 
Seasonally Protected areas 409.20 26.72 0.00 0.00 7.00 
Among survey 
months 

Protected areas 382.48 0.00 1.00 1.00 11.00 

Within seasons Protected areas 463.38 80.90 0.00 0.00 5.00 
Constant Seasonally 469.33 86.85 0.00 0.00 6.00 
Seasonally Seasonally 458.00 75.52 0.00 0.00 9.00 
Among survey 
months 

Seasonally 457.81 75.33 0.00 0.00 13.00 

Within seasons Seasonally 471.32 88.84 0.00 0.00 7.00 

Table 1. Selection of competing occupancy models of fisher distribution, each with 
different assumptions about probability of detection and fisher occupancy. The best-
supported model is highlighted. 
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widely around the landscape and may use undisturbed forest as activity centres and "stepping stones" 

across areas of developed or naturally unforested landscape (Figure 3). We also see that fisher avoid 

large open areas, such as those that are found as grazing areas in Cooking Lake/Blackfoot Recreation 

area. These results are observational and preliminary, however, utilizing the statistical technique of step 

selection functions (Thurfjell et al. 2014) we will quantify the proportion of used to unused habitat 

types. This analysis will quantify the type of habitat features required to support fisher populations, the 

distance between ideal habitat features, whether fisher reside within the centre or along the edge of 

habitats, and the speed to which fisher can travel through different habitat types – all crucial 

information for ensuring Alberta’s landscapes “work” to maintain persistent biodiversity. 

 

 

4.5 DISCUSSION AND FUTURE DIRECTIONS 

 The plan for 2017-2018 is to publish sections 2.0 and 3.0 of this report, and to explore the data 

and complete analyses of section 4.0. Section 4.0 will comprise two of Frances’ Ph.D. thesis chapters, 

and will complete the writing of her thesis.  This April she will start the analysis of step selection 

Figure 3. Movement path of Fisher male "M01", overlaid on Google Earth imagery, shows the 
complex network of movements over a two week period. The width of the figure represents 6km.  
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functions of fisher GPS collar data (Section 4.4.3), and by August she will be finalizing the mammal 

community and fisher occupancy work (Section 4.4.1 and 4.4.2).  

 These chapters will be submitted to Ecography and Journal of Applied Ecology, respectfully, 

once written. This will guarantee at least 4 scientific articles to be published out of this work, with 

potential collaborations being currently developed that would all the data to used and published under 

other cutting edge research questions. 

 Frances will be continuing to provide regular public presentations on this work and gets regular 

invites as a guest lecturer; all of this allows for this community involved research to be disseminated 

through public, academic, and government institutions. 

 

4.5.1 Community Involvement 

We have contacted over 50 landowners and received the support of 26 of them for this project. The 

support of private landowners has been very encouraging throughout The Moraine Mesocarnivore 

Project, and the project has been the focal point for community discussions about conservation and 

developing greater connection and discussion facilitation between locals. We also incorporated seven 

CSL (Community Service Learning) students from Augustana Campus, University of Alberta, to help us 

input data from camera pictures and complete some basic fieldwork in throughout our 2014 & 2016 

field seasons. We have engaged Friends of Elk Island Society in this project, and they have eagerly 

assisted with camera deployment and checking (see http://www.elkisland.ca/conservation-

research/mesocarnivore-monitoring), public communication through organizing a once yearly public 

talk, and advertising and promoting this research to the Edmonton community. We have also engaged 

the Beaver Hills Initiative, securing financial and in-kind (GIS data) support, and their help in engaging 

their membership with outreach activities. Environment Canada, Ontario MNR, Trent University, and 

Manitoba DNR have all helped procure samples for this project. The University of Victoria has provided 

genetic laboratory space free of charge.  

This work to date was presented three times at the annual meeting of the FEIS to an audience of 

~70 people each time; the Alberta Trail Rider’s Association; the Friends of Cooking Lake / Blackfoot 

Provincial Recreation Area; the Strathcona All Horse Association; University of Augustana’s Conservation 

http://www.elkisland.ca/conservation-research/mesocarnivore-monitoring)
http://www.elkisland.ca/conservation-research/mesocarnivore-monitoring)
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Biology course; and InnoTech Alberta offices in Vegreville. We received very positive feedback from the 

local community, with dozens of people offering their time for fieldwork in both 2014 and 2016. One of 

the things we like best about this research is the opportunity to involve local Albertans in ecological 

research in their own backyards. 

4.6 PRELIMINARY CONCLUSIONS 

 We have developed fantastic relationships and close bonds to many of the local landowners, 

FEIS volunteers, Alberta Park and Parks Canada staff, and Augustana campus students throughout this 

project. Engaging the local community in our research was a primary objective of The Moraine 

Mesocarnivore Project and we have done so with their staunch support. Frances continues to track 

citizen fisher sightings through the project webpage (www.mesocarnivore.weebly.com), regularly 

reminds associations such as the Edmonton Area Land Trust, Beaver Hills Initiative, Alberta Parks, and 

Nature Conservancy of Canada to ask their Twitter followers to send sightings her way. She has received 

over 40 citizen science sightings of fisher throughout the province of Alberta, and is plotting them in 

Google Earth to observe their distribution. 

The Moraine Mesocarnivore Project was a central facet of the successful and recent biosphere 

nomination of the Beaver Hills – Canada’s newest Biosphere 

(http://www.beaverhills.ca/conserve/biosphere-nomination/). We hope to continue to provide valuable 

research for the conservation of this landscape, and the conservation of similar landscape throughout 

Canada. We will continue to communicate and converse with the public regarding the findings of The 

Moraine Mesocarnivore Project. The local landowners love to better understand how their property is 

facilitating local biodiversity and provincial connectivity throughout Alberta’s heartland. 

 

 

 

http://www.mesocarnivore.weebly.com)/
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